Files
ferrisetw
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
//! ETW Types Parser
//!
//! This module act as a helper to parse the Buffer from an ETW Event
use crate::native::etw_types::EVENT_HEADER_FLAG_32_BIT_HEADER;
use crate::native::tdh;
use crate::native::tdh_types::{Property, PropertyFlags, TdhInType, TdhOutType};
use crate::property::{PropertyInfo, PropertyIter};
use crate::schema::Schema;
use crate::utils;
use std::borrow::Borrow;
use std::collections::HashMap;
use std::convert::TryInto;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
use std::rc::Rc;
use windows::Guid;

/// Parser module errors
#[derive(Debug)]
pub enum ParserError {
    /// An invalid type...
    InvalidType,
    /// Error parsing
    ParseError,
    /// Length mismatch when parsing a type
    LengthMismatch,
    PropertyError(String),
    /// An error while transforming an Utf-8 buffer into String
    Utf8Error(std::string::FromUtf8Error),
    /// An error trying to get an slice as an array
    SliceError(std::array::TryFromSliceError),
    /// Represents an internal [TdhNativeError]
    ///
    /// [TdhNativeError]: tdh::TdhNativeError
    TdhNativeError(tdh::TdhNativeError),
}

impl From<tdh::TdhNativeError> for ParserError {
    fn from(err: tdh::TdhNativeError) -> Self {
        ParserError::TdhNativeError(err)
    }
}

impl From<std::string::FromUtf8Error> for ParserError {
    fn from(err: std::string::FromUtf8Error) -> Self {
        ParserError::Utf8Error(err)
    }
}

impl From<std::array::TryFromSliceError> for ParserError {
    fn from(err: std::array::TryFromSliceError) -> Self {
        ParserError::SliceError(err)
    }
}

type ParserResult<T> = Result<T, ParserError>;

/// Trait to try and parse a type
///
/// This trait has to be implemented in order to be able to parse a type we want to retrieve from
/// within an Event. On success the parsed value will be returned within a Result, on error an Err
/// should be returned accordingly
///
/// An implementation for most of the Primitive Types is created by using a Macro, any other needed type
/// requires this trait to be implemented
// TODO: Find a way to use turbofish operator
pub trait TryParse<T> {
    /// Implement the `try_parse` function to provide a way to Parse `T` from an ETW event or
    /// return an Error in case the type `T` can't be parsed
    ///
    /// # Arguments
    /// * `name` - Name of the property to be found in the Schema
    fn try_parse(&mut self, name: &str) -> Result<T, ParserError>;
}

/// Represents a Parser
///
/// This structure holds the necessary data to parse the ETW event and retrieve the data from the
/// event
#[allow(dead_code)]
pub struct Parser<'a> {
    schema: &'a Schema,
    properties: PropertyIter,
    buffer: Vec<u8>,
    last_property: u32,
    cache: HashMap<String, Rc<PropertyInfo>>,
}

impl<'a> Parser<'a> {
    /// Use the `create` function to create an instance of a Parser
    ///
    /// # Arguments
    /// * `schema` - The [Schema] from the ETW Event we want to parse
    ///
    /// # Example
    /// ```rust
    /// let my_callback = |record: EventRecord, schema_locator: &mut SchemaLocator| {
    ///     let schema = schema_locator.event_schema(record)?;
    ///     let parser = Parse::create(&schema);
    /// };
    /// ```
    pub fn create(schema: &'a Schema) -> Self {
        Parser {
            schema,
            buffer: schema.user_buffer(),
            properties: PropertyIter::new(schema),
            last_property: 0,
            cache: HashMap::new(), // We could fill the cache on creation
        }
    }

    #[allow(dead_code)]
    fn fill_cache(
        schema: &Schema,
        properties: &PropertyIter,
    ) -> ParserResult<HashMap<String, PropertyInfo>> {
        let user_buffer_len = schema.user_buffer().len();

        Ok(properties.properties_iter().iter().try_fold(
            HashMap::new(),
            |mut cache, x| -> ParserResult<HashMap<String, PropertyInfo>> {
                let prop_size = tdh::property_size(schema.record(), &x.name)? as usize;

                if user_buffer_len < prop_size {
                    return Err(ParserError::PropertyError(
                        "Property length out of buffer bounds".to_owned(),
                    ));
                }
                let prop_buffer = schema.user_buffer()[..prop_size]
                    .iter()
                    .take(prop_size)
                    .cloned()
                    .collect();

                cache.insert(x.name.clone(), PropertyInfo::create(x.clone(), prop_buffer));

                Ok(cache)
            },
        )?)
    }

    // TODO: Find a cleaner way to do this, not very happy with it rn
    fn find_property_size(&self, property: &Property) -> ParserResult<usize> {
        if property
            .flags
            .intersects(PropertyFlags::PROPERTY_PARAM_LENGTH)
            && property.len() > 0
        {
            let size;
            if property.in_type() == TdhInType::InTypePointer {
                size = if (self.schema.event_flags() & EVENT_HEADER_FLAG_32_BIT_HEADER) != 0 {
                    4
                } else {
                    8
                };
            } else {
                size = property.len() as usize;
            }
            return Ok(size);
        }

        // TODO: Study heuristic method used in krabsetw :)
        if property.flags.is_empty() && property.len() > 0 {
            return Ok(property.len());
        }

        Ok(tdh::property_size(self.schema.record(), &property.name)? as usize)
    }

    fn find_property(&mut self, name: &str) -> ParserResult<Rc<PropertyInfo>> {
        if self.cache.contains_key(name) {
            return Ok(Rc::clone(self.cache.get(name).unwrap()));
        }

        let mut prop_info = Rc::new(PropertyInfo::default());

        // TODO: Find a way to do this with an iter, try_find looks promising but is not stable yet
        // TODO: Clean this a bit, not a big fan of this loop
        for i in self.last_property..self.schema.property_count() {
            let curr_prop = match self.properties.property(i) {
                Some(prop) => prop,
                None => return Err(ParserError::PropertyError("Index out of bounds".to_owned())),
            };

            let prop_size = self.find_property_size(&curr_prop)?;

            if self.buffer.len() < prop_size {
                return Err(ParserError::PropertyError(
                    "Property length out of buffer bounds".to_owned(),
                ));
            }

            // TODO: Evaluate not cloning the Property nor the buffer
            // We drain the buffer, if everything works correctly in the end the buffer will be empty
            // and we should have all properties in the cache
            let prop_buffer = self.buffer.drain(..prop_size).collect();
            prop_info = Rc::from(PropertyInfo::create(curr_prop.clone(), prop_buffer));
            self.cache
                .insert(String::from(&curr_prop.name), Rc::clone(&prop_info));

            if name == curr_prop.name {
                self.last_property = i + 1;
                break;
            }
        }

        Ok(prop_info)
    }
}

macro_rules! impl_try_parse_primitive {
    ($T:ident) => {
        impl TryParse<$T> for Parser<'_> {
            fn try_parse(&mut self, name: &str) -> ParserResult<$T> {
                let prop_info = self.find_property(name)?;
                let prop_info: &PropertyInfo = prop_info.borrow();

                // TODO: Check In and Out type and do a better type checking
                if std::mem::size_of::<$T>() != prop_info.buffer.len() {
                    return Err(ParserError::LengthMismatch);
                }
                Ok($T::from_ne_bytes(prop_info.buffer.as_slice().try_into()?))
            }
        }
    };
}

impl_try_parse_primitive!(u8);
impl_try_parse_primitive!(i8);
impl_try_parse_primitive!(u16);
impl_try_parse_primitive!(i16);
impl_try_parse_primitive!(u32);
impl_try_parse_primitive!(i32);
impl_try_parse_primitive!(u64);
impl_try_parse_primitive!(i64);
impl_try_parse_primitive!(usize);
impl_try_parse_primitive!(isize);

/// The `String` impl of the `TryParse` trait should be used to retrieve the following [TdhInTypes]:
///
/// * InTypeUnicodeString
/// * InTypeAnsiString
/// * InTypeCountedString
/// * InTypeGuid
///
/// On success a `String` with the with the data from the `name` property will be returned
///
/// # Arguments
/// * `name` - Name of the property to be found in the Schema

/// # Example
/// ```rust
/// let my_callback = |record: EventRecord, schema_locator: &mut SchemaLocator| {
///     let schema = schema_locator.event_schema(record)?;
///     let parser = Parse::create(&schema);
///     let image_name: String = parser.try_parse("ImageName")?;
/// };
/// ```
///
/// [TdhInTypes]: TdhInType
impl TryParse<String> for Parser<'_> {
    fn try_parse(&mut self, name: &str) -> ParserResult<String> {
        let prop_info = self.find_property(name)?;
        let prop_info: &PropertyInfo = prop_info.borrow();

        // TODO: Handle errors and type checking better
        let res = match prop_info.property.in_type() {
            TdhInType::InTypeUnicodeString => {
                utils::parse_null_utf16_string(prop_info.buffer.as_slice())
            }
            TdhInType::InTypeAnsiString => String::from_utf8(prop_info.buffer.clone())?
                .trim_matches(char::default())
                .to_string(),
            TdhInType::InTypeCountedString => unimplemented!(),
            _ => return Err(ParserError::InvalidType),
        };

        Ok(res)
    }
}

impl TryParse<Guid> for Parser<'_> {
    fn try_parse(&mut self, name: &str) -> Result<Guid, ParserError> {
        let prop_info = self.find_property(name)?;
        let prop_info: &PropertyInfo = prop_info.borrow();

        let guid_string = utils::parse_utf16_guid(prop_info.buffer.as_slice());

        if guid_string.len() != 36 {
            return Err(ParserError::LengthMismatch);
        }

        Ok(Guid::from(guid_string.as_str()))
    }
}

impl TryParse<IpAddr> for Parser<'_> {
    fn try_parse(&mut self, name: &str) -> ParserResult<IpAddr> {
        let prop_info = self.find_property(name)?;
        let prop_info: &PropertyInfo = prop_info.borrow();

        if prop_info.property.out_type() != TdhOutType::OutTypeIpv4
            && prop_info.property.out_type() != TdhOutType::OutTypeIpv6
        {
            return Err(ParserError::InvalidType);
        }

        // Hardcoded values for now
        let res = match prop_info.property.len() {
            16 => {
                let tmp: [u8; 16] = prop_info.buffer.as_slice().try_into()?;
                IpAddr::V6(Ipv6Addr::from(tmp))
            }
            4 => {
                let tmp: [u8; 4] = prop_info.buffer.as_slice().try_into()?;
                IpAddr::V4(Ipv4Addr::from(tmp))
            }
            _ => return Err(ParserError::LengthMismatch),
        };

        Ok(res)
    }
}

#[derive(Clone, Default, Debug)]
pub struct Pointer(usize);

impl std::ops::Deref for Pointer {
    type Target = usize;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl std::ops::DerefMut for Pointer {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl std::fmt::LowerHex for Pointer {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let val = self.0;

        std::fmt::LowerHex::fmt(&val, f) // delegate to u32/u64 implementation
    }
}

impl std::fmt::UpperHex for Pointer {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let val = self.0;

        std::fmt::UpperHex::fmt(&val, f) // delegate to u32/u64 implementation
    }
}

impl std::fmt::Display for Pointer {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let val = self.0;

        std::fmt::Display::fmt(&val, f) // delegate to u32/u64 implementation
    }
}

impl TryParse<Pointer> for Parser<'_> {
    fn try_parse(&mut self, name: &str) -> ParserResult<Pointer> {
        let prop_info = self.find_property(name)?;
        let prop_info: &PropertyInfo = prop_info.borrow();

        let mut res = Pointer::default();
        if prop_info.buffer.len() == std::mem::size_of::<u32>() {
            res.0 = TryParse::<u32>::try_parse(self, name)? as usize;
        } else {
            res.0 = TryParse::<u64>::try_parse(self, name)? as usize;
        }

        Ok(res)
    }
}

impl TryParse<Vec<u8>> for Parser<'_> {
    fn try_parse(&mut self, name: &str) -> Result<Vec<u8>, ParserError> {
        let prop_info = self.find_property(name)?;
        let prop_info: &PropertyInfo = prop_info.borrow();

        Ok(prop_info.buffer.clone())
    }
}
// TODO: Implement SocketAddress
// TODO: Implement SID
// TODO: Study if we can use primitive types for HexInt64, HexInt32 and Pointer